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ABSTRACT

The modeling of the pressure-strain correlation of turbulence is examined from a basic

theoretical standpoint with a view toward developing improved second-order closure models.

Invariance considerations along with elementary dynamical systems theory are used in the

analysis of the standard hierarchy of closure models. In these commonly used models, the

pressure-strain correlation is assumed to be a linear function of the mean velocity gradients

with coefficients that depend algebraically on the anisotropy tensor. It is proven that for

plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models

is encapsulated by a relatively simple model which is only quadratically nonlinear in the

anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the

Launder, Reece, and Rodi model (as well as more recent models that have a considerably

more complex nonlinear structure) in a variety of homogeneous turbulent flows. However,

some deficiencies still remain for the description of rotating turbulent shear flows that are

intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere

introduction of more complex nonlinearities. It is thus argued that the recent trend of

adding substantially more complex nonlinear terms containing the anisotropy tensor may be

of questionable value in the modeling of the pressure-strain correlation. Possible alternative

approaches are discussed briefly.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the first and second authors were in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

The pressure-strain correlation plays a pivotal role in determining the structure of a wide

variety of turbulent flows. Consequently, the proper modeling of this term is essential for

the development of second-order closure models that have reliable predictive capabilities.

Rotta (1951) developed the first simple model for the slow pressure-strain correlation (i.e.,

the part that is independent of the mean velocity gradients) which describes the return

to isotropy behavior of turbulence within the framework of a full Reynolds stress closure.

This model has served as a cornerstone for the representation of the slow pressure-strain

correlation in a variety of the commonly used second-order closures such as the Launder,

Reece, and Rodi (1975) model. Subsequent to this work, Lumley (1978) demonstrated the

need for nonlinear terms in models for the slow pressure-strain correlation and derived a

nonlinear representation theorem for the slow pressure-strain correlation based on isotropic

tensor function theory. In the high-Reynolds-number and small anisotropy limit, the Lumley

(1978) model reduces to the Rotta model.

The simplest model for the rapid pressure-strain correlation that is used in second-order

closure modeling is based on the assumption of isotropy of the coefficients of the mean

velocity gradients; this gives rise to a rapid pressure-straln model with a single term that

is proportional to the mean rate of strain tensor (see Rotta 1972 and Mellor and Herring

1973). Starting with the work of Launder, Reece, and Rodi (1975), anisotropic models for

the rapid pressure-strain correlation have been formulated wherein the coefficients of the

mean velocity gradients are taken to be functions of the anisotropy tensor. In the Launder,

Reece, and Rodi model, the fourth-rank tensor of coefficients of the mean velocity gradient

tensor is linear in the anisotropy tensor whereas most of the newer models developed during

the last decade are nonlinear (see Shih and Lumley 1985, Haworth and Pope 1986, Speziale

1987, Reynolds 1987, and Fu, Launder, and Tselepidakis 1987). The nonlinear models of

Lumley and co-workers have been primarily developed by the use of realizability constraints

(see Lumley 1978). In contrast to this approach, the nonlinear model of Speziale (1987) was

derived using a geostrophic flow constraint (i.e., material frame-indifference in the limit of

two-dimensional turbulence) whereas Reynolds (1988) has attempted to develop models that

are consistent with Rapid Distortion Theory (RDT).

In this paper, the general hierarchy of closure models for the pressure-strain correlation

will be considered which are linear in the mean velocity gradients, with coefficients that are

functions of the anisotropy tensor. This hierarchy of models, which was motivated by analy-

ses of homogeneous turbulence, encompasses all of the closure models for the pressure-strain

correlation that have been used in connection with second-order closures. A general repre-

sentation for this hierarchy of closure models will be derived by means of invariant tensor



function theory. This general representation for the pressure-strain correlation will then be

• applied to plane homogeneous turbulent flows - the class of flows that have long played a piv-

otal role in the screening and calibration of such models. However, there will be one notable

difference with previous work on this subject: the simplest generic form of this hierarchy of

models will be sought that has the same equilibrium structure in the phase space of plane

homogeneous turbulent flows as the general model. This generic form - which will be termed

the SSG model - is only quadratically nonlinear in the anisotropy tensor. It has the advan-

tage of being topologically equivalent to the general model in plane homogeneous turbulence

with the simplicity of structure that allows for the determlnation of all empirical constants

based on calibrations with pertinent RDT results and two well documented physical exper-

iments (i.e., homogeneous turbulent shear flow and the decay of isotropic turbulence). This

new SSG model will be shown to perform better than the commonly used Launder, Reece,

and Rodi model for a variety of homogeneous turbulent flows which include plane strain,

rotating plane shear, and the axlsymmetric expansion/contraction. However, there are still

some remaining deficiencies in the new model, particularly for rotating shear flow. Based

on an analysis of the bifurcation diagram for rotating shear flow, it will be shown that these

deficiencies are intrinsic to this general hierarchy of pressure-strain models and cannot be

eliminated by the addition of more complex nonlinear terms. The implications that these

results have on turbulence modeling will be discussed in detail along with suggested future

directions of research.

2. THE GENERAL PRESSURE-STRAIN MODEL

We will consider the turbulent flow of a viscous, incompressible fluid governed by the

Navier-Stokes and continuity equations

Ov_ Ov_ OP

--Or + v¢--Oz¢ = - _ + uV2vi (1)

cgvi

= o. (2)

In (1) - (2),v_ is the velocityvector, P is the modified pressure, and v is the kinematic

viscosityof the fluid.The velocityand pressure are decomposed into ensemble mean and

fluctuatingparts,respectively,as follows:

vi=V_+u_, P=P+p. (3)

Here, the mean and fluctuating velocity are solutions of the transport equations

+ ' - + + (4)
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where riS - - _i-u7 is the Reynolds stress tensor.

The Reynolds stress tensor _'iS is a solution of the transport equation

(5)

(6)

(7)

where

(9)

(10)His = p \ Oz,i +

O,_ Ous
vii = 2v om k 0mk (II)

are, respectively, the third-order diffusion correlation, the pressure-strain correlation, and

the dissipation rate correlation. Equation (8) is obtained by taking the symmetric part of

the ensemble mean of the product of the fluctuating velocity u s with equation (6). For homo-

geneous turbulent flows, at high Reynolds numbers where the dissipation is approximately

isotropic, the Reynolds stress transport equation (8) simplifies to

2
+_i= --Tikb-_X_ -- rikb-_Xk -- 1-ks+ ]v6_i (12)

where

v = vox k Oxk (13)

is the scalar dissipation rate. Equation (12) becomes a closed system for the determination

of _'ii in terms of O'_i/Oz s once closure models for IIii and ¢ are provided. Since IIis is the

only unknown correlation that contains directional information, it is clear that it will play

a pivotal role in determining the structure of the Reynolds stress tensor for a given mean

velocity field. This dominant influence of II O on the evolution of the Reynolds stress tensor

in (12) has motivated researchers to rely on homogeneous turbulent flows for the testing and

calibration of pressure-strain models.

The fluctuating pressure p is a solution of the Poisson equation

_20us O-_i Oui Ou i Oui Ou s
-- (14)



which is obtained by subtracting the divergenceof (4) from the divergence of (1). In the

absence of boundaries, equation (14) has the general solution

P= _ Y--Ix -x,j [2_ + dr'. (1_)

For homogeneous turbulent flows (where the mean velocity gradients are spatially uni-

form) the pressure-strain correlation takes the form

0%
Hij = A_j + M_j_t'WL-" (16)

uwl

where

A_j = 4-'-_/-_ _,Oz_ +

Mi._kt = _ . _,O:r,j

v _k'_t dV'

a_,] a_'_a_',Ix'- xl (17)

au;_ou_ dr, (18)
+ 0_, } O_, Ix'- xl"

It has been shown that Aij and Mijkt are functionals - over time and wavenumber space - of

the energy spectrum tensor; see Weinstock (1981, 1982) and Reynolds (1987). In a one point

closure, this dependence would suggest models for A/j and Mijkt that depend on the history

of the Reynolds stress tensor and dissipation rate. The simplest such models are algebraic

in form:

A/j = tAxi(b) (19)

Mijkt = KJV4ijkl(b) (20)

where
1

&. = __s- _rkk6_j (21)
TU

i

K -- --_kk (22)

are _he aniso_ropy _ensor and _urbulent kinetic energy. In (19) - (20), .A_j and .AJ_jkL can

only depend on 7"ij through bij since they are dimensionless tensors that vanish in the limit of

isotropic turbulence. Virtually all models for the pressure-strain correlation that have been

used in connection with second-order closure models are of the general form of (19) - (20).

The use of this hierarchy of models for general inhomogeneous turbulent flows is based on

the assumption of a local homogeneous structure.

The mean velocity gradient tensor can be decomposed into symmetric and antJsymmetric

parts as follows:

o_i = _i_ (23)
+ _
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where

are the meanrate of strain tensorand meanvorticity tensor, respectively. Then, the model

for the pressure-strain correlation specified by (19) - (20) can be written in the equivalent

form

n,_= _/,¢fl(b,_',_-') (26)
where

_j = ---K_'i Kw,•j, _j = --._ (27)

are the dimensionless mean strain rate and vorticity tensor whereas f(/L) denotes the part of

the function fii that is linear in the mean velocity gradients and traceless. Form invariance

under a change of coordinates requires that fij transform as

qf(b,_',_--,)qT = f(qbqT, Q_,QT, Q_-,QT) (28)

where Q is the rotation tensor (and QT is its transpose) which characterizes a change in

orientation of the coordinate axes. In mathematical terms, (28) requires that fi_ be an

isotropic tensor function of its arguments. By using known representation theorems for

isotropic tensor functions (see Smith 1971) to construct fii - and then by taking the linear

and traceless part of fii - the following model for l"Ii¢ is obtained:

n_j = #_eb_j+ &e(b_,=bkj- _b,..b..J_ A + #3K3',j
o

2

2

(29)

where

+&K(bi_,'_#i + b_i'_ii) + fl_K(biib_'_, + biibut'_,t )

14.

= #io(II, IIl)+ #i_ (II, III):_tr(b. S) + fli:(II, III)_,r(b _ • g),

fl_=fli(II, III), j = 3,4,...,7

II = bilbi_, III= bi#b_b_

i = 1,2 (30)

(31)

(32)
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and _r(.) denotesthe trace (seeAppendix A for moredetails). Equation (29) representsthe
most general form of the hierarchy of models (19) - (20) for the pressure-strain correlation

that is consistent with the crucial physical constraint of invariance under coordinate trans-

formations. It will be shown later that the Launder, Reece, and Rodi model is the linear

limit of (29) wherein/31,/33,/34, and/36 are constants while &,&, and/37 are zero.

Finally, in regard to the general model, a few comments should be made concerning non-

inertial frames of reference. In a non-inertial frame, the mean vorticity tensor _i¢ must be

replaced by the intrinsic (i.e., absolute) mean vorticity tensor defined by

'Wi_ = w--/j+ e,,,ji9/,_ (33)

where _,, is the rotation rate of the non-inertial frame relative to an inertial framing and e,,,ji

is the permutation tensor (see Launder, Tselepidakis, and Younis 1987 and Speziale 1989a).

Furthermore, Coriolls terms must be added to the Reynolds stress transport equation which

then takes the form

0-_i 0_ 2
_'ij = --'rikw'--ozk -- "rJk-O_z_ -- IIij + -_cgii - 2('rike,,kja,,_ + rjke,,,kifl,,,) (34)

in an arbitrary non-inertial reference frame.

3. PLANE HOMOGENEOUS TURBULENCE

We will consider the general class of plane homogeneous turbulent flows for which the

mean velocity gradient tensor can be written in the form

O9"_i

0zj

Since the mean continuity equation (5)

0 S+w 0

S -w 0 0 ) . (35)0 0 0

requires that i)-fil/OZl = -c3"fi2/Oz2 in plane homoge-

neous turbulent flows, equation (35) results by simply aligning the coordinates at a 45 ° angle

relative to the principal directions of the symmetric part of O-_i/Oz¢. Of course, in order to

maintain the homogeneity and two-dimensionality of the mean flow, 5' and w are constants

while fli is given by

a, = (0, 0, _) (36)

(hence, the rotation is in the plane where the mean velocity gradients are applied). Equations

(35)- (36) encompass, as special cases, plane shear, plane strain, rotating plane shear, and

rotating plane strain turbulence.



The Reynoldsstresstransport equation (34) for planehomogeneousturbulence can be

written in terms of the anisotropy tensor b_j(t*) (given that t* =- St is the dimensionless

time) as follows:

where

17 (e ) 2 .3 6,j - + %

(olo)(o,o)-* _ 0 0Sij-- 1 0 0 , wij- --g
000 000

li b = II  /2KS

(37)

(38)

(39)

and 7_ - njo_/vOxi is the turbulence production. Equation (37) must be supplemented

with a transport model for the turbulent dissipation rate in order to obtain a closed system,

We will consider the most standard form of the modeled dissipation rate transport equation

given by

(40)

where Col and C,2 can be functions of the invariants II and III of the anisotropy tensor

(in the most commonly used form of this model, C',1 and C',2 are constants that _ssume the

wlues of 1.44 and 1.92, respectively; see Hanjallc and Launder 1972). It will be argued later

that some of the crucial conclusions to be drawn concerning the limitations of this hierarchy

of closure models for the pressure-strain correlation are independent of the specific form of

(40). Furthermore, it should be noted that virtually all of the alterations to (40) that have

been proposed during the last decade are highly ill-behaved (see Speziale 1989b).

The modeled dissipation rate equation (40) can be written in the dimensionless form

_ = -_ [(C,i- 1) -(C,2- 1)]. (41)

Equation (41) is obtained by combining (40) with the transport equation for the turbulent

kinetic energy

/_ -- 7_-_ (42)

which is exact for homogeneous turbulence. When the general model for the pressure-strain

correlation (given by (29), with _j replaced by W_j) is substituted into (37), a closed system

7



for the determination of bii and _/SK is obtained. This system of equations has equilibrium

solutions of the form

where (.)_ denotes the solution in the limit as time t ---* oo; these solutions were shown by

Speziale and Mac Giolla Mhuiris (1989a) to attract all initial conditions. The equilibrium

solutions (43) - (44) are obtained by solving the nonlinear algebraic equations that result

when the time derivatives on the left-hand-sides of (37) and (41) are set to zero. It is a

simple matter to show that there is a trivial equilibrium solution where

-0 c<
which exists for all w/S and 12IS. Non-trivial equilibrium solutions where (e/SK)o_ # 0

exist for intermediate ranges of w/S and 12IS wherein the trivial equilibrium solution (45)

typically becomes unstable.

We will now show that the non-trivial equilibrium values of II_,IIIc¢,(ba3)_, and

(7)/e)_ are universal (i.e., completely independent of w/S and l'l/S) for this hierarchy of

models in plane homogeneous turbulent flows. A closed system of equations for the deter-

mination of the temporal evolution of II, III, b33 and e/SK are as follows:

dII 2e ( __) 7:' e 27) edr"-;" - SK 1- II- 2633_ff-_ + 3 e SK

+5_-_ n + Z,Z_.m _ __ ._17)ozt SK
(46)

dIII

dr" 3e ( __) 3iI7) _ iI7) e- SK 1- III+_ _SK aSK

bT) e 3 e- _7-_ + _Zjn-_ + _n _ _SK

3 7) e

i 7) e

+_5IIb33 -_S-K

(47)



dr,* SK 1- b33 3eSK

1_"b 1 "(b_3-_,,)+_;Jl_--_ = + _Z2_--_

(48)

_ = _ [(c.,- 1) -(c,- 1)1. (49)

Equations (46)- (47) are obtained by multiplying (37) with b and b 2, respectively, and then

taking the trace after the model (29) for II{j is substituted. The non-trivial equilibrium

solutions are then obtained from the nonlinear algebraic equations

211- 7_ 7_ 2 7v(T).+_(T).]"--"(_-)- (T).
7_+,,.+_,,-.-_-=,(_).+_,_.I-(7). c=o)

-_=,"-(I) -o

=[1-@.]"'-+I"-@.-=-(_).

3 b lt94IIo¢ "p

=0

(51)

1- 7_ 1 'P(T).]c_,)--_(7).
b 2 _+I=.I_-)-1"-] =0

(52)

@. - _(Q1- 1) - (C',.= 1) 0 (53)

which are derived by setting the time derivatives on the left-hand-sides of (46) - (49) to

zero and dividing by e/SK. The system of equations (50) - (53) will have solutions for

9



IIoo,IIloo,(b33)ooand (P/g)oo that are completely independent of w/S and Q/S- and hence

universal- for plane homogeneous turbulent flows.

This universal equilibrium structure of II.., III_, (bss). and (_/_)o. will now be utilized

to obtain the simplest generic form of (29) that has the same equilibrium structure as the

general model in the phase space of plane homogeneous turbulent flows. Due to these four

universal invariants, the quadratic terms in the rapid pressure strain correlation are not

linearly independent for plane homogeneous turbulent flows. This quadratic part II (.2.)of (29)t3

is defined as follows:

=  sg(b, b  jl + - 2Slm mn . 6, )+  Tg(b, b gV ,+ (54)
6

For plane homogeneous turbulent flows, a straightforward, although somewhat tedious, cal-

culation yields the relationships

2 b 2 III-_
b,_b_j_ + b_b_. - _b_b_m_6_j_ = -b=(b,_j_ + bj_ - _ _6,_) 3 _ S_ (55)

5,,_5,_jl + 5j_b,_W',l : -5=(5,,;W_,. + bj,.w,,_) (56)

where we have made use of (38) and the fact that the anistropy tensor is of the form

0)
b_2

bij = b12 2 0 (57)
b33

Due to (55)- (56), and the fact that II_,III_,(b33)_ and (7_/e)_ arein such flows.

universal invariants for all plane homogeneous turbulent flows, it follows that the quadratic

terms in the rapid pressure-strain are directly related to the linear terms in such flows.

Consequently, the equilibrium structure of (29) in plane homogeneous turbulent flows will

be indistinguishable from that of the substantially simpler model

1 b

+caK-_il + c4K(b,_ + b_1,_i_ (58)

-2bmn-gmnbi,) + _sK(bi_,W_,+ 5_,,Wi_)

where c_, c_,..., cs are dimensionless constants and we have made use of the fact that

tr(b.S) = 2K (59)

(60)tr(b _ _)= 1 7)• 5b_

10



which wasalso usedin the derivation of (46)- (49). In alternative terms, (58) is topolog-

ically equivalent to the general model (29) in so far as the equilibrium structure of plane

homogeneous turbulent flows is concerned.

It is rather striking that an analysis of the equilibrium states of arbitrary plane ho-

mogeneous turbulence - coupled with the crucial physical constraint of invariance under

coordinate transformations - collapses the general pressure-strain model

nij = e.A_j(b) + K._4_jkl(b) t_k (61)
Oxl '

(which can have as many as forty-five independent functions of b) to the substantially sim-

plified model (58) that has only five undetermined constants. In the next section, a new

model for the pressure-strain correlation will be developed.

4. THE SSG MODEL: ITS ASYMPTOTIC ANALYSIS AND CALIBRATION

Now, a new model for the pressure-strain correlation - which we will call the SSG model

- will be developed based on the previous invariant dynamical systems analysis coupled with

the following additional constraints:

(i) Asymptotic consistency in the limit of small anisotropies

(ii) Consistency with Rapid Distortion Theory for homogeneously strained turbulent flows

that are initially isotropic

(iii)

(iv)

(v)

Consistency with the equilibrium values for homogeneous shear flow obtained from the

physical experiments of Tavoularis and Corrsin (1981)

Consistency with the RDT results of Bertoglio (1982), for rotating shear flows, which

predict that the most unstable ftow occurs when the ratio of the rotation rate to the

shear rate 12/S = 0.25 and that a flow restabilization occurs when fl/S > 0.5

Consistency with the results of physical experiments on the decay of isotropic turbu-

lence and the return to isotropy of an initially anisotropic, homogeneous turbulence.

Since the magnitude of the anisotropy tensor is relatively small (llbll <--0.20 for most turbu-

lent flows of engineering and scientific interest), we feel that terms which are of a comparable

order of magnitude in b_j should be maintained unless there is some overriding physical rea-

son not to do so. In this fashion, the model can then be thought of as an asymptotically

consistent truncation of a Taylor series expansion of A_j and M_jkt in the variable b_j. Since

11



the simplified model for the rapid pressure-strain correlation in (58) is of O(b), this suggests

that c3 - which in general can be a function of the invariants of b - should be replaced by

* 1

(where Cs and C_ are constants) for asymptotic consistency. Furthermore, since the model

for the slow pressure-strain correlation is of O(b_), and since most engineering flows have

significant regions where 79 > e, we will replace the constant cl with the coefficient

+

where C1 and C_' are constants. This yields the following model for the pressure-strain

correlation:
II ¢ = -(6'1e + C; P)b j+ C'2e(b  b,j

-l b,=,_b,,,,_6o) + (Cs - C;II½)K-_o

2
+C4K(bik_jk + bjk-_,k - _b,_,,'_,_n iS)

(62)

+CsK(bikWik + bj_Wik).

Although (62) is topologically equivalent to (58) in so far as the equilibrium states are

concerned, it will give rise to different temporal evolutions. We feel that it is better to

use (62) as our final model for the pressure-strain correlation since all terms that are of a

comparable order in bij have been maintained for asymptotic consistency.

Before using constraints (ii)- (v) to calibrate the SSG model given by (62), a few com-

ments are in order concerning the relationship between this new model and previously pro-

posed models. The SSG model is not significantly more complicated than the commonly

used Launder, Reece, and Rodi model which can be obtained from (62) in the linear limit as

C_, Us and C_ go to zero. In fact, the SSC model is substantially simpler than the recently

proposed nonlinear models of Shih and Lumley (1985) and Fu, Launder, and Tselepidakis

(1987) (see Appendix B).

The coefficients 6'1 and C2 have been calibrated by considering the return to isotropy

problem (see Sarkar and Speziale 1989). Of course, for the return to isotropy problem, only

the terms containing the coefficients C1 and C2 in the pressure-strain correlation survive (i.e.,

the rapid pressure-strain correlation vanishes). Based upon realizability, dynamical systems

considerations, and the phase space portrait of return to isotropy experiments, the following

values of C1 and C2 were arrived at by Sarkar and Speziale (1989):

cl = 3.4 (63)

12



C'2 - 3(CI - 2) = 4.2. (64)

Interestingly enough, the value of C'1 = 3.4 is quite close to the value of 3.6 for the Rotta

coefficient that is currently used in the basic model of Launder and his co-workers. However,

as demonstrated by Sarkar and Speziale (1989), the quadratic term containing C2 is crucial

to properly capture the experimental trends. In Figure 1, the predictions of the SSG model

and the Launder, Reece, and Rodi (LRR) model are compared in the _ -7/ phase space

with the experimental data of Choi and Lumley (1984) for the return to isotropy from plane

strain. The SSG model exhibits a curved trajectory that is well within the range of the

experimental data; the LRR model - as well as any model for which C_ = 0 - erroneously

predicts a straight line trajectory. In Figures 2(a) - (b), the predictions of the SSG model

and the LRR model for the temporal evolution of the anisotropy tensor are compared with

experimental data for the relaxation from plane strain experiment of Choi and Lumley (1984)

and plane contraction experiment of Le Penven, Gence, and Comte-Bellot (1985). The SSG

model, on balance, yields improved predictions over the LRR model. For more detailed

discussions and comparisons, the reader is referred to the paper by Sarkar and Speziale

(1989) where this quadratic model for the slow pressure-strain correlation was compared

with data from four independent experiments on the return to isotropy.

Constraint (ii), which requires consistency with RDT for a homogeneously strained tur-

bulence that is initially isotropic, is commonly enforced in the turbulence modeling literature.

While the dynamical systems analysis presented in Section 3 can guarantee proper long-time

behavior, this RDT constraint can be of considerable assistance in ensuring proper short-

time behavior; if a model properly captures both the short and long-time behavior, it stands

an excellent chance of performing well for all times. This RDT result requires that (see Crow

1968)
4

lim IIij = g K_'_j (65)b---,O

and, hence, that
4

C3 = g (66)

for the SSG model. We found that models which deviated significantly from (66) performed

poorly in homogeneous shear flows (e.g., such models yielded spurious points of inflection in

the time evolution of the turbulent kinetic energy).

Constraints (iii) - (iv) were used to calibrate the remaining constants in the model,

namely, C_, C_, C4, and C5 as well as the constant C,t in the modeled e-transport equation.

This was done using a value of Cc2 = 1.83 (as opposed to the more commonly adopted

value of 1.92) which yields a power law decay in isotropic turbulence with an exponent of

1.2 - a value which is in better agreement with available experimental data as discussed by

13



Reynolds (1987). It was not possibleto obtain the exact equilibrium valuesof Tavoularis

and Corrsin (1981)for homogeneousshearflow and satisfy the RDT resultsof Bertoglio for
rotating shearflow (i.e., constraints(iii) - (iv)). A numericaloptimization yieldedthe values

of C_ = 1.80, C_ = 1.30, 6'4 = 1.25, C_ = 0.40 and C_1 = 1.44 as the best compromise. The

equilibrium values obtained from the SSG model (using these values of the constants) for

homogeneous shear flow are compared with the values obtained from the Launder, Reece,

and Rodi model and the experiments of Tavoularis and Corrsin (1981) in Table 1. From

these results, it is clear that the predictions of the SSG model are well within the range

of the experiments whereas the predictions of the Launder, Reece, and Rodi model deviate

significantly. Furthermore, the SSG model predicts that the largest growth rate in rotating

shear flow occurs when _/S ,,_ 0.22 and that a flow restabilization occurs when _/S > 0.53

in comparison to the corresponding RDT results of _/S = 0.25 and _'l/S > 0.5 (see Bertoglio

1982). These predictions of the SSG model are considerably better than those of the LRR

model which erroneously predicts that the largest growth rate occurs when _//S = 0.14

and that a flow restabilization occurs when _2/S > 0.37. A more detailed discussion of the

performance of the models in rotating shear flow will be presented in the next section.

The SSG model has been carefully calibrated to perform well in shear flows both with

and without added rotationM strains. It is our belief that this will significantly enhance

the performance of the model in turbulent boundary layers with streamline curvature - an

analogous flow with a variety of important engineering applications. However, unlike other

recently derived models for the pressure-strain correlation such as the Shih-Lumley (1985)

model and the Fu, Launder, and Tselepidakis (1987) model, the SSG model given by equation

(62) does not satisfy the strong form of realizability. The strong form of realizability (see

Lumley 1978) constitutes a sufficient condition to guarantee positive component energies

in homogeneous turbulent flows. The SSG model only satisfies a weak form of realizability

wherein the turbulent kinetic energy is guaranteed to be positive; this is a direct consequence

of the form of the modeled e-transport equation (see Speziale 1989b). We decided to opt for

the weaker form of realizability for two major reasons. First, if the turbulent kinetic energy

is positive, realizability can only be violated by fairly large anisotropies, such that

1

Ilbl[ >

(where I1"II is the L2 norm or maximum eigenvalue) which are outside of the expected domain

of applicability of such idealized models. It must be kept in mind that, so long as the model

yields a positive turbulent kinetic energy, it can be applied to a flow (it is primarily negative

kinetic energies that are computationally fatal). Second, it has been our experience that

models which satisfy the strong form of realizability become computationaUy "stiff" in flows
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with large anisotropies. This results from the fact that the finite difference form of the

modeled equations usually do not exactly satisfy realizability (see Speziale and Mac Giolla

Mhuiris 19895). No such problems are encountered by the weak form of realizability since it is

satisfied exactly by most standard numerical formulations of the model. Finally, it should be

mentioned that the SSG model was not forced to satisfy material frame indifference (MFI) in

the limit of two-dimensional turbulence (Speziale 1983) which constitutes another extreme

constraint that is a rigorous consequence of the Navier-Stokes equations. It has recently

become apparent to us that when such extreme constraints as MFI and strong realizability

(correct as they may be for general flows) are applied to highly idealized models, there is a

strong possibility that the model will become overly biased so that it performs poorly in the

more commonly encountered turbulent flows.

5. PERFORMANCE OF THE SSG MODEL IN HOMOGENEOUS FLOWS

The SSC model given by equation (62) will now be tested in four independent homo-

geneous turbulent flows. For the purpose of clarity, we will summarize the values of the

constants that were arrived at in the previous section:

CI = 3.4, C_ = 1.80, C2 = 4.2

4

Ca = g, C; -- 1.30, C4 = 1.25

C5 = 0.40, C,I = 1.44, C,_ = 1.83.

(67)

(68)

(69)

The problem of homogeneous turbulent shear flow in a rotating frame will be considered

first. For this case, the mean velocity gradients and the rotation rate of the reference frame

are given by

0 ,5' 0)
0v, 0 0 0

O-x"Jx/= 0 0 0
(70)

= (71)

respectively, in matrix form. The initial conditions correspond to a state of isotropic turbu-

lence where

b_j = 0, K = K0, _ = eo (72)

at time t = 0. It was shown by Speziale and Mac Giolla Mhuiris (1989a) that the solution

only depends on the initial conditions through the dimensionless parameter eo/SKo; the

dependence of the solution on the shear rate and rotation rate is exclusively through the

dimensionless parameter l_/S. Two types of equilibrium solutions have been established
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for this problem (Speziale and Mac Giolla Mhuiris 1989a): one where (*/SK)oo = 0 which

exists for all _2/5' and one where (e/SK)oo > 0 which exists only for a small intermediate

band of values for _/S. The zero equilibrium value is associated predominantly with stable

flow wherein K and ¢ undergo a power-law time decay; the nonzero equilibrium values are

associated with unstable flow wherein K and e undergo an exponential time growth. The two

solutions undergo an exchange of stabilities for intermediate values of ills (which includes

the case of pure shear where £I/S = 0). In this fashion, the second-order closures are able

to account for both the shear instability - with its exponential time growth of disturbance

kinetic energy - and the stabilizing (or destabilizing) effect of rotations on shear flow.

In Figures 3(a)- (c), the predictions of the $SG model for the time evolution of turbulent

kinetic energy are compared with those of the LRR model and the results of the large-eddy

simulations of Bardina, Ferziger, and Reynolds (1983) for rotating shear flow. From these

figures, it is clear that the SSG model does a much better overall job of capturing the trends

of the large-eddy simulations. Several observations are noteworthy: (a) the LRR model

exhibits too strong a growth rate for pure shear (ills = 0) in comparison to the SSG model

and large-eddy simulations, (b) both the SSG and LRR models yield too weak a growth

rate for the fl/S = 0.25 case, however, the $SG model is substantialIy better, and (c) the

SSG model properly captures the weak growth rate that occurs for F//S = 0.5, whereas the

LRR model erroneously predicts a flow restabilization. The premature flow restabilization

predicted by the LRR model at FI/S .._ 0.37 is somewhat serious since, in addition to the

results of large-eddy simulations, linear stability theory and RDT predict that there should

be unstable flow for the entire range of 0 < fl/S < 0.5 (see Lezius and Johnston 1976 and

Bertoglio 1982). As mentioned earlier, the SSG model does not predict a flow restabilization

until ills > 0.53.

It would be useful at this point to compare the performance of the SSG model in rotating

shear flow with that of some newer models that have been recently proposed. Three such

models - the model of Shih and Lumley (1985), the model of Fu, Launder, and Tselepidakis

(1987), and the RNG model of Yakhot and Orszag (1988) - were compared in a recent study

of Speziale, Gatski, and Mac Oiolla Mhuiris (1989). It was established in that study that

the Fu, Launder, and Tselepidakis (FLT) model performed the best among these models

in rotating shear flow. Hence, for simplicity, we will only compare the $SO model with

the FLT model. In Figures 4(a) - (c), the results for the turbulent kinetic energy obtained

from the SSG model and the FLT model for the rotation rates of _/S = 0, _/S = 0.25,

and _/S = 0.50 are compared with the large-eddy simulations of Bardina, Ferziger, and

Reynolds (1983) for rotating shear flow. It is clear from these results that the $$G model

properly captures the trends of the large-eddy simulations which indicate that all three cases
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areunstableand that the _/S = 0.25 case has the strongest growth rate. On the otherhand,

the FLT model erroneously predicts that the _/S -- 0 and _/S = 0.25 cases are equally

energetic and that the _/S = 0.5 case has undergone a restabilization. Comparable to the

LRR model, the FLT model erroneously predicts a premature restabilization at _/S _ 0.39.

It may be of concern that a heavy emphasis has been placed on comparisons with large-

eddy simulations for rotating shear flow (unfortunately, no direct simulations or physical

experiments have been conducted for this problem). However, it must be emphasized that

the critical evaluations have been based on which states should be more energetic - results

which have been confirmed independently by RDT and linear stability theory.

A bifurcation diagram for the general hierarchy of closure models (61) is shown in Figure

5 for rotating shear flow. Here, the equilibrium value of (e/SK)_ is plotted as a function of

_/S. The SSG model as well as the other commonly used models have the same topological

structure in rotating shear flow as indicated in Figure 5. There are two equilibrium solutions:

the solution where (s/SK)_ -- 0 exists for all _/S but becomes unstable in the interval AB;

the nonzero solution for (s/SK)_, which lies on the semi-ellipse ACB, exchanges stabilities

with the trivial solution (e/SK)_ = 0 in the interval A < _/S < B. For _/S < A-6A and

_/S > B ÷ 6B (where 6A and 6B represent a small increment that depends on the model)

the trivial equilibrium value of (_/SK)_ = 0 is associated with solutions where the kinetic

energy undergoes a power law decay with time; for A - 6A _< F//S < B -t- 8B, this trivial

solution is associated with solutions where the kinetic energy undergoes a power law growth

with time. The nonzero equilibrium values (e]SK),_ > 0 (on the semi-ellipse ACB) are

associated with solutions where the kinetic energy grows exponentially with time. It can be

shown (see Speziale and Mac GioUa Mhuiris 1989a) that the growth rate _, for A < _/S < B

is given by

where a = (C,2 - 1)/(C,1- 1). Hence, point C- which corresponds to the maximum value

of (_],.qK)_o - represents the most energetic state with the largest growth rate of kinetic

energy.

The coordinates [_2/S,(e/SK)_] of points A,B, and C (in Figure 5) for the Launder,

Reece, and Rodi model and the SSG model are given below:

LRR Model

A = [-0.09, 0], B = [0.37, 0], C = [0.14, 0.167]

SSG Model

A = [-0.09, 0], B = [0.53, 0], C = [0.22, 0.254].
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The improvedperformanceof the SSGmodel in rotating shear flow is largely due to the

fact that its most energetic state (point C on the bifurcation diagram shown in Figure 5) is

located in close proximity to fl/,.q = 0.25 - the value predicted by rapid distortion theory.

However, it needs to be mentioned at this point that the reason we were not able to satisfy

this R.DT result exactly is due to a defect in the general hierarchy of models (61). Due to

(73) and the fact that the bifurcation diagram is symmetric about its most energetic state

(point C in Figure 5), the general hierarchy of models (61) erroneously predicts Richardson

number similarity if point C is located at _/5' = 0.25. Such models will yield solutions for

K and e that scale with the l_ichardson number

m = -2(his)(1 - re�s) (74)

and, thus, erroneously predict that the fl/S = 0 and l'_/S = 0.5 cases are identical. Large-

eddy simulations, RDT (Bertoglio 1982), and independent mathematical analyses of the

Navier-Stokes equations (Speziale and Mac Oiolla Mhuiris 1989b) indicate that the n/S = 0

and _/S = 0.5 cases are distinct. By moving the most energetic state a small distance to

the left of fl/S' = 0.25 - as is done with the SSO model - the proper growth rates obtained

from large-eddy simulations for _/S = 0 and _/S = 0.5 can be reproduced (see Figures 3(a)

and 3(c)). However, the substantially larger growth rate for fl/S = 0.25 shown in Figure

3(b) (which has independent support in the RDT calculations of Bertoglio 1982), cannot be

reproduced by the 88(3 model. This is a defect in the general hierarchy of models (61) that is

intimately tied to their prediction of universal equilibrium values for II_, III_, (bas)_ and

(7_/e)oo in plane homogeneous turbulent flows - an oversimplification that is not supported

by physical or numerical experiments, t Nonethdess, despite this deficiency, the SS(] model

performs reasonably well- and is superior to other existing second-order closures - for

rotating shear flow as evidenced by Table 1, Figures 3(a)- (c), and Figures 4(a)- (c).

Now, we will examine the performance of the SSO model in homogeneous plane strain

turbulence for which the mean velocity gradients are given by

= 0 - 0

uz_ 0 0 0
(75)

and the turbulence evolves from an initial state of isotropy. Comparisons of the model predic-

tions will be made with the direct numerical simulations of Lee and Reynolds (1985) on plane

strain. Such comparisons must be made with caution due to the low turbulence Reynolds

numbers of the direct simulations. However, comparisons with physical experiments (e.g.,

tit is not possible to tie this deficiency to the modeled e-transport equation since all dependence on •
can be eliminated in the RDT limit.
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Tucker and Reynolds1968and Genceand Mathieu 1980)are equally problematical due to

the uncertainty in the initial conditions for e/SK and possible large-scale contamination

from the walls of the test apparatus.

In Figure 6, the time evolution of the turbulent kinetic energy for the LRR model and SSG

model are compared with the direct simulations of Lee and Reynolds (1985) for plane strain

corresponding to the initial condition _o/SKo = 2.0. It is clear from this figure that both

models perform extremely well. In Figure 7, the time evolution of the non-zero components

of the anisotropy tensor are shown. Although the quantitative accuracy of the models is

not extremely good, it is clear that the SSG model does better than the LRR model and

reproduces the crucial trends of the direct simulations. In Figures 8 - 9, the time evolution

of the turbulent kinetic energy and non-zero components of the anisotropy tensor are shown

corresponding to the initial condition of _o/EKo = 1.0. The same conclusions can be drawn

from these results: the SSG model yields improved predictions over the LRR model and,

on balance, compares reasonably well with the direct simulations which would be expected

to have somewhat elevated anisotropies due to the lower turbulence Reynolds number. We

will not make more extensive comparisons with the predictions of other turbulence models

since our main purpose here was to simply establish that the alterations made in the LRR

model - to yield the SSG model with its improved behavior in rotating shear flows - do not

compromise its performance in plane strain.

Finally, we will examine the performance of the SSG model for the axisymmetric contrac-

tion and expansion in homogeneous turbulence. Since the SSG model (like virtually all other

existing models for the pressure-strain correlation) was calibrated based on plane homoge-

neous turbulent flows, it would be desirable to assess its performance in a three-dimensional

flow. For the axisymmetric contraction, the mean velocity gradients are given by

 (s0 0)- 0 -½S 0
O=,j o o -½s

whereas in the axisymmetric expansion they take the form

0)0 .

½s10

(76)

(77)

The time evolution of each of these turbulent flows - from an initially isotropic state - will

be considered. Hence, as with plane shear and plane strain, the solutions will only depend

on the initial conditions through the parameter ¢o/SKo. Comparisons will be made with

the predictions of the LRR model and the direct numerical simulations of Lee and Reynolds

(1985) for the same reasons as cited above.
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In Figure 10, the time evolution of the turbulent kinetic energy for the axisymmetric

contraction is shown corresponding to the initial condition eo/gKo = 0.179 which was taken

from the direct simulations of Lee and Reynolds (1985). From these results, it is clear that

the SSG model yields noticeably improved predictions over the LRR model; however, both

models predict growth rates that are smaller than those in the direct simulations. In Figure

11, the time evolution of the nonzero components of the anisotropy tensor are shown for the

axisymmetric contraction where eo/gKo = 0.179. While the differences between the SSG

and LRR models is small, it is clear that the SSG model yields results that are more in line

with the direct simulations.

In Figure 12, the time evolution of the turbulent kinetic energy for the axisymmetric

expansion is shown for the initial condition eo/SKo = 2.45 taken from the direct numerical

simulations of Lee and Reynolds (1985). It is clear from this figure that both the SSG

and LRR models yield results that are in excellent agreement with the direct simulations.

However, the time evolution of the nonzero components of the anisotropy tensor shown in

Figure 13 show more significant differences. Here, the predictions of the SSG model appear

to be substantially better than those of the LRR model.

6. CONCLUSIONS

The modeling of the pressure-strain correlation of turbulence has been considered based

on invariance arguments and a dynamical systems approach. Several important conclusions

have been drawn about the standard hierarchy of closures (61) which led to the development

of a new model - the SSG model. A summary of these findings can be given as follows:

(i) It was proven that the standard hierarchy of models yields non-trivial values for the

equilibrium states IIoo,III_,(baa)_, and (7_/e)_o that are universal (i.e., that do not

depend on w/S, _/S or the initial conditions) for plane homogeneous turbulent flows.

As a direct consequence of these universal invariants, it was shown that, for plane

homogeneous turbulent flows, the general model (61) for the pressure-strain correlation

is topologically equivalent to a substantially simpler model - the SSG model - which

is only quadratically nonlinear in the anisotropy tensor.

(ii) The SSG model was calibrated by using existing data from isotropic decay experiments,

return to isotropy experiments, and homogeneous shear flow experiments along with

the RDT results of Crow (1968) and Bertoglio (1982). By means of this more systematic

method of calibration, the SSG model was demonstrated to perform better than the

Launder, Reece, and Rodi model - as well as the newer models of Shih and Lumley
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(iii)

(iv)

and Fu, Launder, and Tselepidakis - for a variety of homogeneous turbulent flows.

The flows that were examined included the challenging test case of rotating shear flow

(where rotations can either stabilize or destabilize the flow) and the axisymmetric

expansion/contraction which constitutes a three-dimensional mean turbulent flow.

Although the SSG model performs reasonably well for a variety of homogeneous tur-

bulent flows, there are still major deficiencies with it that are intrinsic to this general

hierarchy of models. These deficiencies, emanate from the prediction of universal equi-

librium values for II_, III_, (b33)_ and (P/6)¢_ in plane homogeneous turbulent flows

- an obvious oversimplification that is not supported by physical experiments. As a

result of this deficiency, the general model (61) erroneously predicts that rotating shear

flow has growth rates that are symmetric about their most energetic value: Hence, in

order to satisfy the RDT constraint of Bertoglio (1982) - which puts the most energetic

state at fl/S = 0.25 - the models must exhibit Richardson number similarity. This is

inconsistent with the Navier-Stokes equations as proven by Speziale and Mac Giolla

Mhuiris (1989b) and illtistrated by Bardina, Ferziger, and Reynolds (1983).

Since the general model (61) for the pressure-strain correlation gives an incomplete

picture of plane homogeneous turbulent flows no matter what form is taken for Aii(b)

and Mqkt(b), we feel that the process of adding highly complex nonlinear terms in bq

is somewhat questionable. Such complex nonlinear terms in the rapid pressure-strain

correlation have been largely motivated by the desire to satisfy the strong form of

realizability. However, it must be remembered that the strong form of this constraint

only constitutes a sufficient condition for the satisfaction of realizability in homoge-

neous turbulent flows. Due to the relatively simple topological structure of the general

model in rotating shear flow - which is in no way altered by the addition of more

complex nonlinearities in bij - the application of the strong form of realizability either

removes the degrees of freedom necessary to properly calibrate the model or leads to

stiff behavior.

Despite the deficiencies discussed above, the SSG model seems to perform moderately

well in a variety of homogeneous turbulent flows as documented in this paper. While further

improvements would be most welcome, we feel that it is unlikely that they will come from the

standard hierarchy of models (61). Fundamentally new approaches will be needed. Future

research will be directed on two fronts. The SSG model will be implemented in a full

second-order closure for the computation of a variety of complex aerodynamic flows that are

of technological interest. We believe that when the SSG model is used within the framework
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of a sound second-order closure, it may be possible to obtain acceptable engineering answers

for a range of turbulent shear flows with streamline curvature. In parallel with this effort,

entirely new directions in modeling the pressure-strain correlation will be pursued. These

will involve the introduction of a tensor length scale - to better account for anisotropies -

and the possible solution of a transport equation for M_ikl to account for history effects in

the rapid pressure-strain. A closer examination of these issues will be the subject of a future

paper.
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APPENDIX A

Consider the tensor function

Fij = Fij(b,S',_"). (A1)

Form invariance under coordinate transformations (28) requires that F_j be of the form (see

Smith 1971):

F = aoI + alb + a2b2+ a3g' + a4s '2

+as(bS' + S'b) + as(b2S ' + S'b 2)

+aT(bg '2+ g'2b) + as(b_g '_+ S'_b')

+ag(b_ "_ -_'_b) + al0_'b_ -_ (A2)

+_11(b2_- _b _)+ _l_(_b_ _-_2b_)

+a13(_'_ - _g') + _1,_--_'_'

,_,___, --,g,,) + _6(_-'-g'_ _ _g'_) + _1,_ '_

where ai depend on all possible invariants, i.e.,

al a_(II, III, _r "_ tr g,2, t.r -,3= , S , tr bS', tr b2S ',

tr bS 12, tr b2S'2,tr b'_ 2, tr b2_-_2, _r _-_b_ '2,

(A3)

tr S w ,tr S'2_'2,tr "_'S"_'2,tr bS'_-_,tr b2S'_ -_,

tr b_--°_ ', tr bSa_--'), i = 0, I, 2,..., 17.

Taking the linear part of Fii in S'g_ and _...,_ yields the equation

F (n) = _oI + fllb + fl_b _ +/_3S' +/_4(bS'

+S'b) + fls(b_g ' + S'b z) (A4)

+&(b_ _ - _'b) + _,(b_ --' - _'b _)

where

_o = _oo(II, III)+ _o_(II, III)tr(b. S') + _o_(II, III)f,r(b _ . S')

fit = l_lO( I I, III)+ flll ( II, ZI I)tr(b . S') + _a( II, II I)_r(b _ . S')

(A5)

(A6)
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f12= flao(ll,lll) + fl2x(ll,IIl)tr(b .g') + B22(ll,lll)tr(b2 "S') (A7)

fl,=fl,(II, III), i = 3,4,...,7. (A8)

Then, by taking the deviatoric part of F_(_) (since IIij is traceless) and multiplying by _ we

obtain II{j:

n,j = _(,F(_),,- _f_(_)6,j).
"1

(A9)

Equation (29) results when (A4)- (AS) are substituted into (Ag) and the identities in

equation (27) are made use of.
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APPENDIX B

The pressure-strain models of Shih and Lumley (1985) and Fu, Launder, and Tselepidakis

(1987) take the following form:

Shih-Lumley Model

where

l'Iij

(O-_k _ 2 6

4

1

kOxt e_ufl_)

as = --_0(1 + O.Sx/F), F = 1 + 9II + 27III

I 1 b
II = -_b_jb_j, III= -_bijbjh

= 2 + _F{80.1£n[1 + 62.4(-II + 2.3III)]}

(B1)

(B2)

(B3)

(B4)
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Fu, Launder,

where

and Tselepidakis Model

S,_.T;2_.,ij

0_,,,. 1 {2"rkj'rt_3'_+l.2r.,,3-_.b,j-

+,-(1611(n,,wj,,+ ,,_w,_)

C_=-60II, 7=0.6, r=0.7.

(B5)

(B6)
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Equilibrium

Values LRR Model SSG Model Experiments

(bll t_ 0.193 0.204 0.201

(b22 ioo -0.096 -0.148 -0.147

(b12) oo -0.185 -0.156 -0.150

(SK/c)oo 5.65 5.98 6.08

Table 1. Comparison of the predictions of the Launder, Reece and

Rodi (LRR) model and the Speziale, Sarkar and Gatski (SSG) model

with the experiments of Tavoularis and Corrsin (1981) on homogene-

ous turbulent shear flow.
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Figure 2. Time evolution of the anisotropy tensor during the return to isotropy. Com-
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Figure 3. Time evolution of the turbulent kinetic energy in rotating shear flows.

Comparison of the predictions of the SSG model and LRR model with

the large-eddy simulation of Bardina, Ferziger, and Reynolds (1983) for

Eo/SKo : 0.296: (a) n/S = 0, (b) _/S = 0.25, and (c) n/S = 0.5.
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Figure 3. Time evolution of the turbulent kinetic energy in rotating shear flows.

Comparison of the predictions of the SSG model and LRR model with

the large-eddy simulation of Bardina, Ferziger, and Reynolds (1983) for

eolSKo = 0.296: (a) _IS = O, (b) his = 0.25, and (c) n/S = 0.5.
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Figure 3. Time evolution of the turbulent kinetic energy in rotating shear flows.

Comparison of the predictions of the SSG model and LRR model with

the large-eddy simulation of Bardina, Ferziger, and Reynolds (1983) for

_o/SKo : 0.296: (a) f_/S : 0, (b) fl/S : 0.25, and (c) _/S : 0.5.
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Figure 6.
Time evolution of the turbulent kinetic energy in plane strain for eo/SKo =

2.0. Comparison of the predictions of the LRR model and SSG model with

the direct simulations of Lee and Reynolds (1985).
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Figure 7. Time evolution of the anisotropy tensor in plane strain for So/SK0 = 2.0.

Comparison of the predictions of the LRR model and SSG model with the

direct simulations of Lee and Reynolds (1985).
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Figure 8. Time evolution of the turbulent kinetic energy in plane strain for eo/SKo =

1.0. Comparison of the predictions of the LRR model and SSG model with

the direct simulations of Lee and Reynolds (1985).
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Figure 9. Time evolution of the anisotropy tensor in plane strain for eo/Sgo = 1.0.

Comparison of the predictions of the LRR model and SSG model with the
direct simulations of Lee and Reynolds (1985).
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Figure 10. Time evolution of the turbulent kinetic energy in the axisymmetric con-

traction for eo/gKo = 0.179. Comparison of the predictions of the LI_R

model and SSG model with the direct simulations of Lee and Reynolds

(1985).
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Figure 11. Time evolution of the anisotropy tensor in the axisymmetric contraction

for eo/SKo = 0.179. Comparison of the predictions of the LRR, model and

SSG model with the direct simulations of Lee and Reynolds (1985).
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Figure 12. Time evolution of the turbulent kinetic energy in the axisymmetric expan-

sion for Eo/SKo = 2.45. Comparison of the predictions of the LRR model
and SSG model with the direct simulations of Lee and Reynolds (1985).
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Figure 13. Time evolution of the anisotropy tensor in the axisymmetric expansion for

eo/SKo = 2.45. Comparison of the predictions of the LRR model and SSG

model with the direct simulatioas of Lee and Reynolds (1985).
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